Abstract

Interfacial mixing and transport are nonequilibrium processes coupling kinetic to macroscopic scales. They occur in fluids, plasmas, and materials over celestial events to atoms. Grasping their fundamentals can advance a broad range of disciplines in science, mathematics, and engineering. This paper focuses on the long-standing classic problem of stability of a phase boundary—a fluid interface that has a mass flow across it. We briefly review the recent advances in theoretical and experimental studies, develop the general theoretical framework directly linking the microscopic interfacial transport to the macroscopic flow fields, discover mechanisms of interface stabilization and destabilization that have not been discussed before for both inertial and accelerated dynamics, and chart perspectives for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.