Abstract
An atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local Cu2+ ions concentration at the interface, followed by surface diffusion. This model leads to an unstable interface with the development of protrusions and grooves. Subsequently the model is extended to account for the presence of organic additives, which compete with Cu2+ for adsorption at protrusions, leading to a stable interface with scaling exponents consistent with those of the Edwards-Wilkinson equation. The model reproduces the interface evolution experimentally observed for Cu electrodeposition in the absence and in the presence of organic additives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.