Abstract

We report on a series of controlled computational experiments based on nonequilibrium molecular dynamics and show that at the nanoscale, the thermal rectification is determined by the thermal boundary resistance, i.e., the thermal resistance of the interface, and cannot be explained without it. In the graphene–bilayer graphene system that we study, the sign of the thermal rectification is opposite to the value predicted from bulk-derived models, i.e., phonons preferentially flow in the opposite direction. This behavior derives from the temperature dependence of the thermal boundary resistance and from the fact that the latter, at the nanoscale, has large relative weight compared to the total thermal resistance. These results outline the importance of properly accounting for the active role of the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.