Abstract

This paper reports a phenomenon occurring between phase change material (PCM) germanium telluride (GeTe) and a thin encapsulation layer of alumina when the PCM undergoes the phase transformation, consistent with dewetting of the PCM from the surrounding alumina. Massive structural change, including formation of large voids, which take up to 21.9% of the initial GeTe volume after 10 000 phase change cycles is observed. Electrical and mechanical characterization of the structure confirms this interpretation. A rapid thermal annealing test of blanket films on alumina that demonstrates dewetting further validates this conjecture. The dewetting and associated gross material displacement can lead to an extraordinary actuation corresponding to a one-time 44 nm height change for a 178 nm GeTe thick layer. However, control of this phenomenon is required to build reliable actuators that do not suffer from rupture of the encapsulation layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call