Abstract

Interface design and energy band engineering are two key strategies for improving the thermoelectric conversion efficiency of low dimensional nanoscale devices. By using first-principle-based density functional theory combined with a non-equilibrium Green function method, the thermoelectric properties of a single tetrathiafulvalene (TTF) molecule coupled with armchair phosphorene nanoribbons (APNRs) within different interface modes have been investigated. The results indicate that phonon transport can be dramatically suppressed in this intermediate weak-coupling system due to strong interfacial phonon scattering behavior, where very few phonons can propagate through two nonbonded interface regions from left side lead to a TTF molecule and then to right side lead. Furthermore, connecting a thiophene group at both the head and tail of the intermediate TTF molecule can significantly enhance the power factor (S2σ) of such a weak-coupling system based on an out-of-plane electronic transmission mechanism, and there is obvious charge transfer from S atoms to upper and lower APNRs. Compared to a single regular method, composite interface co-design can achieve more accurate control of thermal/electrical transmission performance. Electrical conductance can be effectively improved with low phonon thermal conductance being maintained at the same time, and an excellent thermoelectric figure of merit (ZT) of 0.73 has been obtained near 0.6 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.