Abstract
Both architecture construction and defects engineering of photocatalysts are highly vital in the photocatalytic activity. We report herein that the interface-defect-mediated photocatalytic activity of pompon-like ZnO (P-ZnO) mesocrystal photocatalyst synthesized via an aqueous approach, in the presence of sodium citrate without any other organic templates. The microstructure and defects of the diverse ZnO photocatalysts were examined with various techniques. The results indicated that the P-ZnO assemblies were composed of mesocrystal nanosheets exposed high energy (002) facet with high crystallinity. More importantly, the defects located at the interfaces among the nanocrystals in ZnO mesocrystals played an important role in the photocatalytic activity than that of interstitial zinc vacancies in bulk, which was confirmed by photocatalytic degradation of organic pollutants, such as methylene blue (MB) and 2,4,6-trichlorophenol (2,4,6-TCP). The results showed that the P-ZnO exhibited higher photocatalytic activity than that of the nanosized ZnO (N-ZnO), which could be attributed to not only the unique mesocrystal structure and high energy (002) facet exposed, but also the defects located at interfaces among nanocrystals in ZnO mesocrystals. In addition, the formation mechanism of the P-ZnO was investigated via a time-dependent method. It was found that the formation of P-ZnO hierarchical architecture assembled with ZnO mesocrystals involved a nonclassical crystallization growth and Ostwald Ripening process. This study provides a perspective on the improvement in photocatalytic activity via adjusting the bulk and interface defects and construction of hierarchical architectures of semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.