Abstract

Abstract The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity, i.e., the projectile is forced to flow radially on the surface of ceramic plates for a period of time without significant penetration. Interface defeat has a direct effect upon the ballistic performance of the armor piercing projectile, which is studied numerically and theoretically at present. Firstly, by modeling the projectiles and ceramic targets with the SPH (Smoothed Particle Hydrodynamics) particles and Lagrange finite elements, the systematic numerical simulations on interface defeat are performed with the commercial finite element program AUTODYN. Three different responses, i.e., complete interface defeat, dwell and direct penetration, are reproduced in different types of ceramic targets (bare, buffered, radially confined and oblique). Furthermore, by adopting the validated numerical algorithms, constitutive models and the corresponding material parameters, the influences of projectile (material, diameter, nose shape), constitutive models of ceramic (JH-1 and JH-2 models), buffer and cover plate (thickness, constraints, material), as well as the prestress acted on the target (radial and hydrostatic) on the interface defeat (transition velocity and dwell time) are systematically investigated. Finally, based on the energy conservation approach and taking the strain rate effect of ceramic material into account, a modified model for predicting the upper limit of transition velocity is proposed and validated. The present work and derived conclusions can provide helpful reference for the design and optimization of both the long-rod projectile and ceramic armor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.