Abstract
AbstractWe investigate three‐dimensional interface crack problems (ICP) for metallic–piezoelectric composite bodies. We give a mathematical formulation of the physical problem when the metallic and piezoelectric bodies are bonded along some proper part of their boundaries where an interface crack occurs. By potential methods the ICP is reduced to an equivalent strongly elliptic system of pseudodifferential equations on manifolds with boundary. We study the solvability of this system in different function spaces and prove uniqueness and existence theorems for the original ICP. We analyse the regularity properties of the corresponding electric and mechanical fields near the crack edges and near the curves where the boundary conditions change. In particular, we characterize the stress singularity exponents and show that they can be explicitly calculated with the help of the principal homogeneous symbol matrices of the corresponding pseudodifferential operators. We present some numerical calculations that demonstrate that the stress singularity exponents essentially depend on the material parameters. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.