Abstract

We present a unique composite assembly of rhombohedral Li3V2(PO4)3 and carbon nanofiber, which simultaneously facilitates Li-ion transport as well as electron transfer. For the synthesis of this composite, the inorganic precursors were confined in electron-spun nanofibers, and then, through controlled annealing, Na3V2(PO4)3 particulates were grown with controllable crystallite size and partially embedded into carbon nanofibers with precisely controlled diameter. The rhombohedral Li3V2(PO4)3 could be successfully obtained by ion exchange from Na to Li in the prepared Na3V2(PO4)3. The final rhombohedral Li3V2(PO4)3 particles anchored onto the carbon nanofibers exhibited excellent electrochemical performance with fast kinetics for Li-ion batteries. Suprisingly it maintains 69 and 41 mAh/g even at 100C as cathode and anode. Several advanced characterizations revealed that its ultrafast kinetics could be attributed to synergistic effect resulting from the distinctive microstructure of the composite and the structural superiority of highly symmetric rhombohedral Li3V2(PO4)3 over its monoclinic homologue for Li-ion transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.