Abstract

The resistance to plastic flow in metals is often dominated by the presence of interfaces which interfere with dislocation nucleation and motion. Interfaces can be static such as grain and phase boundaries or dynamic such as new boundaries resulting from a phase transformation. The interface can be hard and fully impenetrable to dislocations, or soft and partly or fully transparent. The interactions between dislocations and interfaces constitute the main mechanism controlling the strength and strain hardening capacity of many metallic systems especially in very fine microstructures with a high density of interfaces. A phenomenological strain gradient plasticity theory is used to introduce, within a continuum framework, higher order boundary conditions which empirically represent the effect of interfaces on plastic flow. The strength of the interfaces can evolve during the loading in order to enrich the description of their response. The behaviour of single and dual phase steels, with possible TRIP effect, accounting for the interactions with static and dynamic boundaries, is addressed, with a specific focus on the size dependent strength and ductility balance. The size dependent response of weak precipitate free zones surrounding grain boundaries is treated as an example involving more than one microstructural length scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.