Abstract
For heterostructures of ultrathin, strongly correlated copper-oxide films and dielectric perovskite layers, we predict inhomogeneous electronic interface states. Our study is based on an extended Hubbard model for the cuprate film. The interface is implemented by a coupling to the electron and phonon degrees of freedom of the dielectric oxide layer. We find that electronic ordering in the film is associated with a strongly inhomogeneous polaron effect. We propose to consider the interfacial tuning as a powerful mechanism to control the charge ordering in correlated electronic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.