Abstract

Complementary to industrial cantilever based force sensors in scanning probe microscopy (SPM), symmetrical quartz crystal resonators (QCRs), e.g., tuning fork, trident tuning fork, and needle quartz sensors, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development of cheap SPM heads with excellent characteristics. We have developed a high performance electronic interface based on an amplitude controlled oscillator and a phase-locked loop frequency demodulator applicable for QCR with frequencies from 10 up to 10MHz. The oscillation amplitude of the sensing tip can be set from thermal noise level up to amplitudes of a tenth of nanometers. The device is small, cheap, and highly sensitive in amplitude and frequency measurements. Important features of the design are grounded QCR, parasitic capacity compensation, bridge schematic, and high temperature stability. Characteristic experimental data of the device and its operation in combination with a commercial SPM and a homemade scanning near-field optical microscope are reported. By using the 1MHz needle quartz resonator with a standard atomic force microscope tip attached, atomic scale resolution in ambient conditions is achieved. Furthermore, reproducible measurements on very soft materials (Langmuir-Blodgett layers) with a very stiff needle quartz (∼400000N∕m) are possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call