Abstract

Interface circuits for the transfer of data between Single Flux Quantum (SPQ) circuits have been designed, fabricated, and operated at speeds up to 3 Gigabits per second. The circuit employed an improved version of the SFQ/Latch converter, a Modified Variable Threshold Logic (MVTL) OR/AND gate, a 3/spl times/ latching amplifier, and a 3/spl times/-to-10/spl times/ latching amplifier. The amplifier circuits employed stacks of latching junctions. Resistors between the parallel stacks of junctions damped residual currents to prevent flux trapping during reset. Tolerance to critical current variations in the series stacks of junctions was provided by inductive chokes on the input junction shunting resistors. Microwave modeling programs were used to ensure proper distribution of the applied current to all of the latching elements. The circuit transferred data at 3 Gigabits per second from one SFQ circuit up to room temperature and back to another SFQ circuit through 3.4 meters of 50-ohm cable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.