Abstract

The operation analysis of a new interface circuit for electrostatic vibration energy harvesting with adjustable bias voltage is carried out in this paper. Two configurations determined by the open or closed states of an electronic switch are examined. The increase of the voltage across a biasing capacitor, occurring when the switch is open, is proved theoretically and experimentally. With the decrease of this biasing voltage which occurs naturally when the switch is closed due to imperfections of the circuit, the bias voltage can be maintained close to a target value by appropriate ON and OFF control of the switch. As the energy converted by the variable capacitor on each cycle depends on the bias voltage, this energy can be therefore accurately controlled. This feature opens up promising perspectives for optimization the power harvested by electrostatic devices. Simulation results with and without electromechanical coupling effect are presented. In experimental tests, a simple switch control enabling to stabilize the bias voltage is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.