Abstract

WSe2 has demonstrated potential for applications in thermoelectric energy conversion. Optimization of such devices requires control over interfacial thermal and electrical transport properties. Ti, TiOx, and Ti/TiOx contacts to the MBE-grown WSe2 are characterized by XPS and transport measurements. The deposition of Ti is found to result in W-Se bond scission yielding metallic W and Ti-Se chemical states. The deposition of Ti on WSe2 in the presence of a partial pressure of O2, which yields a TiOx overlayer, results in the formation of substoichiometric WSex (x < 2) as well as WOx. The thermal boundary conductance at Ti/WSe2 contacts is found to be reduced for greater WSe2 film thickness or when Au/TiOx interface is present at the contact. Electrical resistance of Au/Ti contacts is found to be higher than that of Au/TiOx contacts with no significant difference in the Seebeck coefficient between the two types of contact structures. This report documents the first experimental study of Ti/WSe2 interface chemistry and thermoelectric properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.