Abstract

The buffer layer of a chalcopyrite solar cell plays an important role in optical responses of open circuit voltage (Voc) and short circuit current (Jsc). A CdS buffer layer is applicable on the nanometer scale owing to its high carrier concentration and n-type semiconductor behavior in chalcopyrite solar cells. The thin buffer layer also contributes to the passivation of the absorber surface to reduce defect recombination loss. Non-destructive metrological parameters such as photoluminescence (PL) intensity, external quantum efficiency (EQE), and depth-resolved photovoltage are used to characterize the interface quality of CdS/chalcopyrite. The defects and dangling bonds at the absorber surface will cause interface recombination and reduce the cell performance in build-in voltage distribution. Post annealing can improve Cd ion diffusion from the buffer layer to the absorber surface and reduce the density of defects and dangling bonds. After thermal annealing, the EQE, PL intensity, and minority carrier lifetime are improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call