Abstract
The interfaces of a lattice-matched InP/InGaAs double-barrier resonant tunneling diode are studied by scanning tunneling microscopy. The interfaces have been mapped with atomic resolution for a length of over 4000 Å, and scanning tunneling microscopy images show the roughness to be very asymmetric with the inverted (InP on InGaAs) interface being considerably rougher than the normal interface. Roughness wave vectors determined from Fourier analysis are well fitted by a Lorentzian function and allow determination of roughness amplitudes and correlation lengths for the different interfaces. A chemical asymmetry between the interfaces is also observed in certain images which exhibit enhanced and reduced state densities at the normal and inverted interfaces, respectively. Termination of the growth surface by differing column V species during interface formation most likely affects the local state density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.