Abstract

Selective photooxidation of amines to biologically important imines is in great demand for industrial applications. The conversion efficiency and selectivity of the process are strongly dependent on the activation of photocatalytic molecular oxygen (O2) into reactive oxygen species. Here, we propose the construction of rich interfaces to boost photocatalytic O2 activation by facilitating the transfer of photocarriers. Taking Bi3O4Br/Bi2O3 heterojunctions as an example, rich interfaces facilitate electron transfer to adsorbed O2 for superoxide (O2·−) generation, thus achieving ≥ 98% conversion efficiency and selectivity for benzylamine and benzylamine derivatives. This study offers a valid method to design advanced photocatalysts for selective oxidation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.