Abstract

Interface bonding property of Mo-fiber reinforced polymer concrete not only depends on its material properties of components but also on microstructure characteristics of fibers including surface state, fiber content, fiber shape, bonding state between fiber and matrix, and so on. Interface bonding mechanism was firstly analyzed in the paper, and finite element simulation was employed to study the influence of fiber surface state, fiber number, bonding state between fiber and resin on interface property respectively. Research results show that the addition of Mo fibers can effectively restrain deformation of matrix, and scrap Mo fibers used as tool electrode material in Wire Electrical Discharge Machining before can improve interface bonding strength better than new smooth Mo fibers. With the increase of fiber number, deformation of the composite is decreasing. When fiber number is identical, maximum deformation of new and scrap Mo fiber-reinforced matrix in complete bonding state is respectively decreased by 12.6% and 14.5% on average compared with in complete debonding state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.