Abstract

Superthick diamond-like carbon (DLC) films [(Six-DLC/Siy-DLC)n/DLC] were deposited on 304 stainless steel substrates by using a plane hollow cathode plasma-enhanced chemical vapor deposition method. The structure was investigated by scanning electron microscopy and transmission electron microscopy. Chemical bonding was examined by Raman, Auger electron, and X-ray photoelectron spectroscopy techniques. Mechanical and tribological properties were evaluated using nanoindentation, scratch, interferometry, and reciprocating-sliding friction testing. The results showed that implantation of a silicon ion into the substrate and the architecture of the tensile stress/compressive stress structure decreased the residual stress to almost 0, resulting in deposition of (Six-DLC/Siy-DLC)n/DLC films with a thickness of more than 50 μm. The hardness of the film ranged from 9 to 23 GPa, and the adhesion strength ranged from 4.6 to 57 N depending on the thickness of the film. Friction coefficients were determined in three tested environments, namely, air, water, and oil. Friction coefficients were typically below 0.24 and as low as 0.02 in a water environment. The as-prepared superthick films also showed an ultrahigh load-bearing capacity, and no failure was detected in the reciprocating wear test with contact pressure higher than 3.2 GPa. Reasons for the ultrahigh load-bearing capacity are proposed in combination with the finite-element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call