Abstract

A possible research path to increase the photo-generated current in silicon heterojunction (SHJ) solar cells is to replace doped layers on the front-side of the cell, which result in significant parasitic light absorption losses. MoOx is one candidate to replace the p-doped a-Si:H layer in such devices, although it is claimed to be relatively unstable to thermal treatments. We found that a MoOx film with a thickness of 6 nm is sufficient to achieve a JSC of 36 mA/cm2, which is 0.5 mA/cm2 on average higher than that of our classical SHJ reference cell. We also established a contact sintering condition for printed Ag at 160 °C after MoOx deposition, without degrading the cell performance. The champion MoOx-contacted cell yielded VOC of 724 mV and FF of 74.1%, resulting in an efficiency of 19.3%. From a detailed analysis of the interfaces of the hole contact, an interfacial a-SiOx of 1.6–2 nm was observed between a-Si:H and MoOx irrespective of the MoOx thickness (6–10 nm) before and after contact sinter annealing at 160 °C. We postulate that this a-SiOx layer acts as an interfacial dipole layer and also increases the contact resistivity at this contact. The intrinsic stability of the optimised MoOx-contacted cell is studied using a one-cell mini-module under standard damp-heat testing (85 °C/85% humidity/1000 h). More than 97 %rel of the original efficiency is maintained after 1010 h of testing, which is comparable to the behavior observed in a classical SHJ reference one-cell mini-module that was similarly tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.