Abstract

Introducing heterogeneous interfaces by constructing laminated structure is a promising avenue to achieve the controllable strengthening behavior of high entropy alloys. In this work, the microstructural evolution and mechanical properties of magnetron sputtered Ni/Fe50Mn30Co10Ni10 nanolaminates with equal layer thickness h ranging from 5 to 150 nm were investigated systematically. With reducing h, the nanoindentation hardness of Ni/FeMnCoNi nanolaminates firstly increased and subsequently decreased, emerging a maximum value at the critical h of ~25 nm due to the transformation of constraining barrier for dislocation slipping from the heterogeneous interfaces to columnar grain boundaries. Microstructural observation demonstrated that the interfacial structure of Ni/FeMnCoNi transformed from incoherent to completely coherent at h below ~25 nm, and both the constituent layers made comparable contribution to the plastic deformation of Ni/FeMnCoNi nanolaminates. The strong h-dependent mechanical behavior could be rationalized in terms of the co-deformation of constituent layers and the structural evolution of Ni/FeMnCoNi interface. Additionally, the strengthening mechanisms were discussed based on the confined slip of dislocation within the constituent layers and columnar grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.