Abstract

AbstractWe carry out a systematic study of various ground state and response properties of homonuclear diatomic molecules (from hydrogen to rubidium, including transition metals) as a function of atomic number of constituent atoms. We perform the ground state and response property calculations by using state of the art density functional theory/time dependent density functional theory. We observe that several properties of homonuclear diatomic molecules show periodic variations along rows and columns of the periodic table. The periodic variations in the ground state properties of diatomic molecules may be explained by the nature and type of the bond that exists between the constituent atoms. Similarly, the periodic variations in the response properties such as static dipole polarizability and strength of the van der Waals interaction between diatomic molecules have been correlated with the variations in metallic/nonmetallic character of the elements along the periodic table. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.