Abstract

AbstractThis paper examines the predictive power of interest rate uncertainty over pre‐provision net revenues (PPNR) in a large panel of bank holding companies (BHC). Utilizing a linear dynamic panel model based on Bayes predictor, we show that supplementing forecasting models with interest rate uncertainty improves the forecasting performance with the augmented model yielding lower forecast errors in comparison to a baseline model which includes unemployment rate, federal funds rate, and spread variables. Further separating PPNRs into two components that reflect net interest and non‐interest income, we show that the predictive power of interest rate uncertainty is concentrated on the non‐interest component of bank revenues. Finally, examining the point predictions under a severely stressed scenario, we show that the model can successfully predict the negative effect on overall bank revenues with a rise in the non‐interest component of income during 2009:Q1. Overall, the findings suggest that stress testing exercises that involve bank revenue models can benefit from the inclusion of interest rate uncertainty and the cross‐sectional information embedded in the panel of BHCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.