Abstract

Solid-state lithium-metal batteries have been identified as a strategic research direction for the electric vehicle industry because of their promising high energy density and potential characteristic safety. However, the intrinsic mechanical properties of solid materials cause inevitable electro-chemo-mechanical failure of electrodes and electrolytes during charging and discharging; these failure mechanisms include lithium penetration and formation of cracks and voids, which pose a serious challenge for the long cycle life of solid-state lithium-metal batteries. Here, a short overview of the recent advances with a view to understand this challenge is provided. Furthermore, new insights into the cross-talk behavior between the cathode and lithium-metal anode are provided based on the non-uniform Li+ flux inducing interactional electro-chemo-mechanical failure. Furthermore, guidelines for designing stable solid-state lithium-metal batteries and research directions to figure out the interelectrode-talk-related electro-chemo-mechanical failure mechanism are presented, which can be significant for accelerating the development of solid-state lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.