Abstract

Aminoacyl-tRNA synthetases are key enzymes of protein biosynthesis which usually possess multidomain structures. Mammalian tyrosyl-tRNA synthetase is composed of two structural modules: N-terminal catalytic core and an EMAPII-like C-terminal domain separated by long flexible linker. The structure of full-length human cytoplasmic tyrosyl-tRNA synthetase is still unknown. The structures of isolated N-terminal and C-terminal domains of the protein are resolved, but their compact packing in a functional enzyme is a subject of debates. In this work we studied putative compactization of the N- and C-terminal modules of human tyrosyl-tRNA synthetase by the coarse-grained hierarchical rotations technique (HIEROT). The large number of distinct types of binding interfaces between N- and C-terminal modules is revealed in the absence of enzyme substrates. The binding propensities of different residues are computed and several binding “hot spots” are observed on the surfaces of N and C modules. These results could be used to govern atomistic molecular dynamics simulations, which will sample preferable binding interfaces effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.