Abstract
Binding to receptors in the cell nucleus is crucial for the action of lipophilic hormones and ligands. PPAR-gamma (for peroxisome proliferator-activated receptor) is a nuclear hormone receptor that mediates adipocyte differentiation and modulates insulin sensitivity, cell proliferation and inflammatory processes. PPAR-gamma ligands have been implicated in the development of atherogenic foam cells and as potential cancer treatments. Transcriptional activity of PPAR-gamma is induced by binding diverse ligands, including natural fatty acid derivatives, antidiabetic thiazolidinediones, and non-steroidal anti-inflammatory drugs. Ligand binding by PPAR-gamma, as well as by the entire nuclear-receptor superfamily, is an independent property of the carboxy-terminal ligand-binding domain (LBD) of the receptor. Here we show that ligand binding by PPAR-gamma is regulated by intramolecular communication between its amino-terminal A/B domain and its carboxy-terminal LBD. Modification of the A/B domain, for example by physiological phosphorylation by MAP kinase, reduces ligand-binding affinity, thus negatively regulating the transcriptional and biological functions of PPAR-gamma. The ability of the A/B domain to regulate ligand binding has important implications for the evaluation and mechanism of action of potentially therapeutic ligands that bind PPAR-gamma and that are likely to extend to other members of the nuclear-receptor superfamily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.