Abstract

An interdigitated extended gate field effect transistor (IEGFET) has been proposed as a modified pH sensor structure of an extended gate field effect transistor (EGFET). The reference electrode and the extended gate in the conventional device have been replaced by a single interdigitated extended gate. A metal–semiconductor-metal interdigitated extended gate containing two multi-finger Ni electrodes based on zinc oxide (ZnO) thin film as a pH-sensitive membrane. ZnO thin film was grown on a p-type Si (100) substrate by the sol–gel technique. The fabricated extended gate is connected to a commercial metal-oxide–semiconductor field-effect transistor device in CD4007UB. The experimental data show that this structure has real time and linear pH voltage and current sensitivities in a concentration range between pH 4 and 11. The voltage and current sensitivities are found to be about 22.4 mV/pH and 45 μA/pH, respectively. Reference electrode elimination makes the IEGFET device simple to fabricate, easy to carry out the measurements, needing a small volume of solution to test and suitable for disposable biosensor applications. Furthermore, this uncomplicated structure could be extended to fabricate multiple ions microsensors and lab-on-chip devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call