Abstract

A detailed study has been made of interdiffusion in ZnSe-ZnTe strained-layer superlattices (SLSs) grown by molecular-beam epitaxy (MBE) at a growth temperature of 320 °C. In x-ray diffraction measurements, the satellite peak intensities relative to the zero-order peak intensity decreased with annealing time. The interdiffusion coefficient D was calculated assuming a linear diffusion model. The values of D=3.6×10−21 to 2.2×10−19 cm2/s at an annealing temperature of 500 °C were obtained for the ZnSe-ZnTe SLSs. In the high-resolution transmission electron microscopy (HRTEM) image of as-grown SLSs, the presence of fine superlattice structures was seen, but for interdiffused samples stripes due to the periodic superlattice structures were not visible and many dislocation lines were observed. These results suggest that the structure of SLSs is significantly modulated by thermal annealing at a temperature higher than the growth temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.