Abstract

Interdiffusion in nickel (Ni)-chromium (Cr) (face-centered cubic γ phase) alloys with small additions of aluminum (Al), silicon (Si), germanium (Ge), or palladium (Pd) was investigated using solid-to-solid diffusion couples. Ni-Cr-X alloys having compositions of Ni-22at.% Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge, and Ni-22at.%Cr-1.6at.%Pd were manufactured by arc casting. The diffusion couples were assembled in an Invar steel jig, encapsulated in Ar after several hydrogen purges, and annealed at 900 °C in a three-zone tube furnace for 168 h. Experimental concentration profiles were determined from polished cross sections of these couples by using electron probe microanalysis with pure element standards. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine the average ternary interdiffusion coefficients. The effects of ternary alloying additions on the diffusional behavior of Ni-Cr-X alloys are presented in the light of the diffusional interactions and the formation of a protective Cr2O3 scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.