Abstract

The interdiffusion and microstructural evolution of the Cr2O3–Al2O3 (5 vol.% ZrO2) diffusion couple are studied in the temperature range 1600–1800°C under microwave heating (24 Hz) and, for comparison, under traditional heating using electron microprobe analysis and microscopic analysis. It is found that the concentration of chromium is distributed differently in Al2O3 in diffusion zones under microwave and traditional heating. This is due to greater contribution of grain-boundary diffusion to the effective diffusion flux under microwave heating. Bulk diffusion and average grain-boundary diffusion coefficients are calculated. The grain size in the diffusion zone toward Al2O3 is smaller after microwave heating. Traditional heating induces grain growth by recrystallization, whereas two processes, recrystallization and polygonization, are superimposed during microwave heating. The polygonization is due to the generation of dislocations under thermal stresses originating from nonuniform temperature distribution in the diffusion zone with variable concentrations of the components. The calculated bulk and grain-boundary diffusion coefficients can be used to predict the kinetics of various diffusion mass-transfer processes in Al2O3 and Cr2O3 oxides and their mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.