Abstract

We have investigated interdiffusion in iron-aluminium alloys using single-phase interdiffusion couples of FexAl1−x–FeyAl1−y for three combinations of x and y for Al contents between 18 and 49.5 at. % Al. Experimental diffusion profiles were obtained from electron-microprobe analysis of the diffusion zone. Interdiffusion coefficients were deduced via the Sauer-Freise method taking into account volume changes. A temperature interval between 997 and 1447 K was covered in our experiments. Thermodynamic factors were obtained from two theoretical models and judged by an analysis of the Kirkendall effect in the diffusion couples. The Darken-Manning equation was used to deduce self-diffusion coefficients of aluminium from the present interdiffusion coefficients, the thermodynamic factors, the vacancy-wind factors, and the iron tracer diffusivities obtained recently at the M¨unster laboratory. The results show that Al diffusion is always slightly faster than Fe diffusion. The difference never exceeds a factor of three. This small difference indicates that Fe and Al diffusion in B2 ordered iron-aluminides are closely coupled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.