Abstract
Interdiction problems are leader–follower games in which the leader is allowed to delete a certain number of edges from the graph in order to maximally impede the follower, who is trying to solve an optimization problem on the impeded graph. We introduce approximation algorithms and strong NP-completeness results for interdiction problems on planar graphs. We give a multiplicative (1+ϵ)-approximation for the maximum matching interdiction problem on weighted planar graphs. The algorithm runs in pseudo-polynomial time for each fixed ϵ>0. We also show that weighted maximum matching interdiction, budget-constrained flow improvement, directed shortest path interdiction, and minimum perfect matching interdiction are strongly NP-complete on planar graphs. To our knowledge, our budget-constrained flow improvement result is the first planar NP-completeness proof that uses a one-vertex crossing gadget.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.