Abstract
A universal type space of interdependent expected utility preference types is constructed from higher-order preference hierarchies describing (i) an agent's (unconditional) preferences over a lottery space; (ii) the agent's preference over Anscombe-Aumann acts conditional on the unconditional preferences; and so on.Two types are said to be strategically indistinguishable if they have an equilibrium action in common in any mechanism that they play. We show that two types are strategically indistinguishable if and only if they have the same preference hierarchy. We examine how this result extends to alternative solution concepts and strategic relations between types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.