Abstract
Methods A validated patient-specific biomechanical modeling and simulation technique was used to assess the 3D correction of a Lenke-1 AIS case through posterior spinal instrumentation. Uniplanar pedicle screws were bilaterally placed at the 2 proximal, 2 distal, and 3 apical levels. The simulation steps included only the concave side 5.5 mm CobaltChrome rod attachment and its derotation followed by apical vertebral derotation. Eighteen instrumentation simulations were performed with different rod contours (curvatures of 10, 20 and 30 degrees), rod derotation (70, 90 and 110 degrees), and vertebral derotation torques (3 and 5 Nm per screw at the 3 apical levels). Indices in the 3 planes (Cobb angle, thoracic kyphosis, apical vertebral rotation (AVR)) were computed for each simulation.
Highlights
Background and objectiveIn surgical instrumentation of scoliotic spine, correction maneuvers are performed with 3D correction principles to achieve deformity reduction in specific anatomic planes
The objective was to evaluate the interdependency between the effects of the correction maneuvers in the 3 anatomical planes during the correction process
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.