Abstract
The Escherichia coli rhaSR operon encodes two AraC family transcription activators, RhaS and RhaR, and is activated by RhaR in the presence of L-rhamnose. beta-Galactosidase assays of various rhaS-lacZ promoter fusions combined with mobility shift assays indicated that a cyclic AMP receptor protein (CRP) site located at -111.5 is also required for full activation of rhaSR expression. To address the mechanisms of activation by CRP and the RNA polymerase alpha-subunit C-terminal domain (alpha-CTD) at rhaSR, we tested the effects of alanine substitutions in CRP activating regions 1 and 2, overexpression of a truncated version of alpha (alpha-Delta235), and alanine substitutions throughout alpha-CTD. We found that DNA-contacting residues in alpha-CTD are required for full activation, and for simplicity, we discuss alpha-CTD as a third activator of rhaSR. CRP and RhaR could each partially activate transcription in the absence of the other two activators, and alpha-CTD was not capable of activation alone. In the case of CRP, this suggests that this activation involves neither an alpha-CTD interaction nor cooperative binding with RhaR, while in the case of RhaR, this suggests the likelihood of direct interactions with core RNA polymerase. We also found that CRP, RhaR, and alpha-CTD each have synergistic effects on activation by the others, suggesting direct or indirect interactions among all three. We have some evidence that the alpha-CTD-CRP and alpha-CTD-RhaR interactions might be direct. The magnitude of the synergistic effects was usually greater with just two activators than with all three, suggesting possible redundancies in the mechanisms of activation by CRP, alpha-CTD, and RhaR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.