Abstract

We determine the widest class of topological mappings for which a correspondence of boundaries is describable in terms of prime ends in the sense of Caratheodory. Relying on a concept of relative distance, we explain why the class so determined is the widest possible, and using a characteristic property of mappings of this class we prove a generalized theorem of Koebe on correspondence of accessible points and we establish its logical equivalence to a fundamental theorem of the Caratheodory theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.