Abstract

In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.