Abstract

Study regionHudson Bay Lowlands watersheds, Ontario, Canada. Study FocusThe rivers in the Hudson Bay Lowlands are a major source of freshwater entering the Arctic Ocean and they also cause major floods. In recent decades, this region has been affected by major changes in hydroclimatic processes attributed to climate change and natural climate variability. In this study, we used ERA5 reanalysis data, hydrometric observations, and the hydrological model MESH, to investigate the impact of atmospheric circulation on the inter-decadal variability of streamflow between 1979 and 2018 in the Hudson Bay Lowlands. The natural climate variability was assessed using a weather regimes approach based on the discretization of daily geopotential height anomalies (Z500) from ERA5 reanalysis, as well as large scale oceanic and atmospheric variability modes. New hydrological insightsThe results showed an anomalous convergence of atmospheric moisture flux between 1995–2008 that enhanced precipitation and increased streamflow in the western part of the region. This moisture convergence was likely driven by the combination of (i) low pressure anomalies in the East Coast of North America and (ii) low pressure anomalies in western regions of Canada, associated with the cold phase of the pacific decadal oscillation (PDO). Since 2009, streamflow remains high, likely due to more groundwater discharge associated with the degradation of permafrost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.