Abstract

AbstractThe East Asian summer monsoon (EASM) plays a crucial role for ecosystems and societies in East Asia past, present, and future. However, substantial uncertainties remain regarding EASM variability on interdecadal to multidecadal timescales because of the short length of instrumental data in East Asia. This study extended the EASM circulation index in the modern meteorological studies to the paleoclimate over the past half‐millennium (1470–1998 CE) to reconcile the understanding of the EASM variability in paleoclimate and modern meteorological studies. The EASM index is reconstructed based on the common signal from the three main types of the proxy records (the tree rings, speleothems, and historical documentary data) related to EASM. The reconstructed EASM index captures the simultaneous changes of the “Meiyu precipitation” and the southwesterly anomalies in South China on interdecadal to multidecadal timescales, which is a dynamic pattern visible and well‐documented in the modern meteorology. Analysis of the reconstructed EASM index suggests that the interdecadal to multidecadal EASM variability is closely associated with the Pacific‐Japan teleconnection pattern, which acts as a bridge between the negative phase of the Pacific Decadal Oscillation and the anomalous anticyclonic circulation over the western North Pacific. It also indicates that the EASM variability over the recent 30 years (1992–2021 CE) falls within the range of natural variability over the past half‐millennium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call