Abstract

AbstractWe investigated the interdecadal trend of Oyashio velocity and transport during 1993–2011 based mainly on linear trend analysis of altimetry and in situ temperature‐salinity data from a monitoring line (“A‐line”) off the southeastern Hokkaido coast. Significant trends of increasing sea level were detected on the continental slope, north of the Kuril‐Kamchatka Trench. Sea level anomaly data revealed a localized clockwise circulation centered near the trench, the suggestion being that the strength of the Oyashio on the slope and the offshore return flow had decreased. The Oyashio mainstream seemed to have shifted from a nearshore to an offshore path. Steric heights estimated from the A‐line data exhibited an increasing trend north of the trench, where 50–80% of the increase was determined by halosteric components attributable to a trend of decreasing salinity in the subsurface. The trend of decreasing salinity was related to downward displacement of isohaline/isopycnal surfaces. The largest displacement was above the trench. Horizontal pressure gradients associated with southwestward flows on the slope were weakened. The Oyashio transport decreased by 8.9 Sv (106 m3 s−1) in 19 years. A mesoscale eddy analysis revealed that clockwise eddies appeared more frequently in recent years near the trench around the A‐line and could decrease the Oyashio transport. A baroclinic, long Rossby‐wave model also predicted that a large‐scale baroclinic response to the wind stress could weaken the Oyashio velocity in the upper layer. Dynamical linkage between the localized eddies and large‐scale response remains to be clarified in future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.