Abstract

Several studies concerning ferrite grain refinement have been developed in recent the last years due to the recognised influence of such microstructures on steels properties. This work was focused on the evaluation of the microstructure and mechanical properties of an ultrafine grained CMn steel obtained by hot torsion deformation and intercritical annealing. After 5 min soaking at 900 and 1200°C, the samples of low carbon steel were quenched and then reheated. Hot torsion deformation was conducted at temperatures of 700 or 740°C. The torsion schedule consisted of 7 isothermal passes leading to a total true strain of ≈1 and generating an ultrafine and inhomogeneous microstructure with grain sizes of the order of 1-m, formed by strain-induced dynamic transformation (SIDT). The samples were heated up to 800oC and held for 1, 2 and 3 h. A more homogeneous microstructure and ferrite grain size were obtained after annealing The microhardness tests showed the reduction in hardness with the increase in annealing time. They also highlighted the effects of the ferrite grain size and the volume fractions of the microstructure constituents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.