Abstract

BackgroundWithin the family of green fluorescent protein (GFP) homologs, one can mark two main groups, specifically, fluorescent proteins (FPs) and non-fluorescent or chromoproteins (CPs). Structural background of differences between FPs and CPs are poorly understood to date.ResultsHere, we applied site-directed and random mutagenesis in order to to transform CP into FP and vice versa. A purple chromoprotein asCP (asFP595) from Anemonia sulcata and a red fluorescent protein DsRed from Discosoma sp. were selected as representatives of CPs and FPs, respectively. For asCP, some substitutions at positions 148 and 165 (numbering in accordance to GFP) were found to dramatically increase quantum yield of red fluorescence. For DsRed, substitutions at positions 148, 165, 167, and 203 significantly decreased fluorescence intensity, so that the spectral characteristics of these mutants became more close to those of CPs. Finally, a practically non-fluorescent mutant DsRed-NF was generated. This mutant carried four amino acid substitutions, specifically, S148C, I165N, K167M, and S203A. DsRed-NF possessed a high extinction coefficient and an extremely low quantum yield (< 0.001). These spectral characteristics allow one to regard DsRed-NF as a true chromoprotein.ConclusionsWe located a novel point in asCP sequence (position 165) mutations at which can result in red fluorescence appearance. Probably, this finding could be applied onto other CPs to generate red and far-red fluorescent mutants. A possibility to transform an FP into CP was demonstrated. Key role of residues adjacent to chromophore's phenolic ring in fluorescent/non-fluorescent states determination was revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.