Abstract

Thermal motion of CH4+ is investigated by performing an ab initio molecular dynamics method with the second-order Møller-Plesset (MP2)/6-311G** force field. In the trajectories obtained at 400 K, we have observed rapid interconversion behavior of the geometrical parameters of CH4+ with the frequency of 0.6/ps, where the C-H pair forming the small angle around 55 degrees is switched to another pair on subpicosecond time scale. The switching patterns are found to be classified into the following two types. Type 1: one C-H of the small angled C-H pair is switched to one C-H of the other C-H pair. Type 2: the small angled C-H pair is switched to the other C-H pair, which has been newly observed in the present ab initio MD calculation. The four C-H bonds of CH4+ are characterized by the long and short C-H bonds in a time region of the trajectories, and also for the time-evolution of C-H bonds such interconversion behavior is observed. The switching patterns of the geometrical parameters are compared with those in the interconversion scheme between six equivalent C2v symmetry structures of CH4+ [Paddon-Row, M. N. et al., J Am Chem Soc 1985, 107, 7696]. We have also investigated the electronic energy fluctuation due to thermal motion of CH4+. The standard deviation of total electronic energy at 400 K is evaluated to be 1.2 kcal/mol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.