Abstract
This paper establishes a straightforward interconnection between the Kronecker canonical form and the special coordinate basis of linear systems. Such an interconnection yields an alternative approach for computing the Kronecker canonical form, and as a by-product, the Smith form, of the system matrix of general multivariable time-invariant linear systems. The overall procedure involves the transformation of a given system in the state-space description into the special coordinate basis, which is capable of explicitly displaying all the system structural properties, such as finite and infinite zero structures, as well as system invertibility structures. The computation of the Kronecker canonical form and Smith form of the system matrix is rather simple and straightforward once the given system is put under the special coordinate basis. The procedure is applicable to proper systems and singular systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.