Abstract

To mimic the fibrous architecture of collagen, the nanofibrous gelatin scaffolds are fabricated employing a thermally induced phase separation (TIPS) technique. The influences of processing parameters, including polymer concentration and solvent mixture composition on the scaffold microstructure are investigated. However, using the TIPS technique, a limited pore size range is generally obtained. To yield the well-interconnected macroporous structures with equiaxed pores and nanofibrous architectures, the TIPS technique is combined with particulate leaching. The macroporous structure of produced scaffolds duplicates the predefined three-dimensional template structure. The homogenous macrostructure with well-interconnected equiaxed pores and no particular orientation is created. Modulating the size and shape of microspheres has precise control over porosity, pore size, and interconnection of the matrix. Because of the well-interconnected macroporous nanofibrous structure, the useful applications of these scaffolds in the tissue engineering field are expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.