Abstract

Highly ordered periodic macroporous structures have been extensively utilized to significantly enhance the photocatalytic activity. However, constructing 3D interconnected ordered porous ternary nanostructures with highly crystalline frameworks remains a formidable challenge. Here, we introduce the design and fabrication of 3D interconnected periodic macroporous NaNbO3 (PM NaNbO3) to effectively increase the density of surface-active sites and optimize the photogenerated carrier-transfer efficiency. By incorporating Pt as a cocatalyst, PM NaNbO3 exhibits an exceptional photocatalytic hydrogen generation rate of 10.04 mmol h-1 g-1, which is approximately six and five times higher than those of calcined NaNbO3 (C-NaNbO3) and hydrothermal NaNbO3 (H-NaNbO3), respectively. This outstanding performance can be attributed to the synergistic effects arising from its well-interconnected pore architecture, large surface area, enhanced light absorption capability, and improved charge carrier separation and transport efficiency. The findings presented in this study demonstrate an innovative approach toward designing hierarchically periodic macroporous materials for solar-driven hydrogen production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.