Abstract

The complex phase interactions of the two-phase flow are a key factor in understanding the flow pattern evolutional mechanisms, yet these complex flow behaviors have not been well understood. In this paper, we employ a series of gas-liquid two-phase flow multivariate fluctuation signals as observations and propose a novel interconnected ordinal pattern network to investigate the spatial coupling behaviors of the gas-liquid two-phase flow patterns. In addition, we use two network indices, which are the global subnetwork mutual information (I) and the global subnetwork clustering coefficient (C), to quantitatively measure the spatial coupling strength of different gas-liquid flow patterns. The gas-liquid two-phase flow pattern evolutionary behaviors are further characterized by calculating the two proposed coupling indices under different flow conditions. The proposed interconnected ordinal pattern network provides a novel tool for a deeper understanding of the evolutional mechanisms of the multi-phase flow system, and it can also be used to investigate the coupling behaviors of other complex systems with multiple observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call