Abstract

The Advanced Microwave Scanning Radiometer-EOS (AMSR-E) on Aqua and WindSat on Coriolis instruments have collected multichannel passive microwave data over the global land and oceans since 2002 and 2003, respectively. AMSR-E on Aqua ceased operation in October 2011 due to a malfunction in the antenna scanning mechanism. AMSR-E and WindSat have similar frequencies, bandwidths, polarizations, incidence angles and instantaneous fields of view (IFOVs), but there are some differences in their configurations. The altitudes and local overpass times also differ between the AMSR-E and WindSat sensors. The time series of data from the two instruments have a long period of overlap, which can be used to intercompare and cross-calibrate the instrument data sets taking into account the instrument differences. This would allow retrieval of geophysical parameters using common algorithms that could take advantage of the increased time duration and sampling coverage afforded by combining data from the two sensors. In this paper, we focus on land applications and compare the multichannel data from these two sensors over land. Channels useful primarily for soil moisture and vegetation water content studies (i.e., ~ 6, ~ 10, ~ 18, and ~ 37 GHz at H- and V-pol) are used in the comparisons. To minimize differences caused by surface temperature effects related to local overpass times, only descending passes (with Equator crossing times for AMSR-E of 1:30 a.m. and WindSat 6:00 a.m.) are considered. Homogeneous and temporally stable sites such as Dome-C, Antarctica and the Amazon forest, and a flat and bare region in the Sahara desert are chosen to evaluate similarities and differences among comparable channel observations. Taking into consideration the sensor configurations and geophysical conditions during the descending overpasses, reasonably good agreement is observed between AMSR-E and WindSat measurements over the globe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.