Abstract

The use of Triaxys directional wave buoy and acoustic Doppler current profiler (ADCP) for wave measurements are relatively recent. The US National Oceanic and Atmospheric Administration’s (NOAA) National Ocean Service (NOS) acquired these instruments in 2001 and systematic laboratory and field tests were conducted during 2001–2002. This paper describes the field tests conducted near the US Army Corps of Engineers’ Field Research Facility (FRF) ocean pier and near the Barren Islands in the Chesapeake Bay. At the FRF site, Triaxys buoy wave measurements were compared with FRF’s field standards of pressure sensor arrays and Datawell Waverider buoy. For the Bay test, ADCP was compared with the Triaxys buoy. There are significant numbers of outlier in the Triaxys peak periods at both test sites. In the Chesapeake Bay, which is dominated by high frequency and low energy waves, there is much scatter in the Triaxys data for significant wave heights below 0.2 m. Detailed analyses were performed after these outliers and noisy data were removed. Statistics of differences in significant wave heights, peak periods and directions between each comparative pair were computed and characteristics of frequency and frequency-direction spectra were examined. Overall, correlations between each instrument pair are very good in significant wave heights, fair in wave peak periods (except the ADCP/Triaxys pair), and marginal in wave directions. Triaxys buoy compared better with Waverider buoy than with others. Both ADCP and FRF pressure sensor array exhibit higher resolution in detecting multi-modal and multi-frequency waves. In most cases, energy distribution of spectral peaks in Triaxys buoy data differs significantly from those obtained from FRF pressure sensor array and ADCP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call